Improved lower bound for 2-identifying code in the square grid

Ville Junnila

Department of Mathematics

University of Turku

Finland

Preliminaries

• Let G = (V, E) be a simple undirected graph.

• The ball of radius r centered at $u \in V$ is defined as

$$B_r(u) = \{ v \in V \mid d(u, v) \le r \}.$$

- A nonempty subset of V is called a code, and its elements are called codewords.
- Let $C \subseteq V$ be a code. Then for every $u \in V$ we denote

$$I_r(u) = I_r(C; u) = B_r(u) \cap C.$$

The set $I_r(u)$ is called the *I*-set of u.

Definition

Definition. A code $C \subseteq V$ is said to be *r*-*identifying* in *G* if the *I*-sets $I_r(u)$ are nonempty for all $u \in V$ and for all $u, v \in V(u \neq v)$

$$I_r(u) \neq I_r(v). \tag{1}$$

- This definition is due to Karpovsky, Chakrabarty and Levitin (1998).
- Let $X \subseteq V$ and $Y \subseteq V$. The symmetric difference of Xand Y is defined as $X \bigtriangleup Y = (X \setminus Y) \cup (Y \setminus X)$.
- The condition (1) can be replaced by $I_r(u) \bigtriangleup I_r(v) \neq \emptyset$.
- If $I_r(u) \triangle I_r(v) \neq \emptyset$, then we say that u and v are r-separated by C.

Optimal code

- In studying identifying codes, the main goal is usually to find as small codes as possible.
- The smallest cardinality of an *r*-identifying code in a *finite* graph *G* is denoted by $M_r(G)$.
- An r-identifying code attaining the smallest cardinality is called optimal.
- In order to measure codes in *infinite* graphs such as grids, we later define the concept of *density*.

Square grid G_S

• The square grid G_S with the vertex set \mathbb{Z}^2 illustrated.

Density

- Consider the square grid G_S with the vertex set $V = \mathbb{Z}^2$.
- Define $Q_n = \{(x, y) \in \mathbb{Z}^2 \mid |x| \le n, |y| \le n\}.$
- In order to measure codes, we define the *density* of a code C in G_S as

$$D(C) = \limsup_{n \to \infty} \frac{|C \cap Q_n|}{|Q_n|}.$$

• An *r*-identifying code with the smallest density is called *optimal*. Moreover, this smallest density is denoted by $\delta_r(G_S)$.

Known results on G_S

- By Cohen *et al.* (1999), there exists a construction stating that $\delta_1(G_S) \le 7/20$.
- Ben-Haim and Litsyn (2005) showed that

 $\delta_1(G_S) = 7/20.$

By Charon *et al.* (2001) and Honkala and Lobstein (2002) respectively provided the following lower and upper bounds for general r:

$$\frac{3}{8r} \le \delta_r(G_s) \lessapprox \frac{2}{5r}.$$

Construction in the case r = 2

Solution By Honkala and Lobstein (2002), we have the following 2-identifying code in G_S with density 5/29.

Lower bound in the case r = 2

• By the lower bound for general r, we have

$$\delta_2(G_S) \ge \frac{3}{20} = 0.15.$$

Martin and Stanton (2010) improved this lower bound by showing that

$$\delta_2(G_S) \ge \frac{6}{37} \approx 0.162.$$

We further improve this lower bound to 6/35, i.e. show that

$$0.171 \approx \frac{6}{35} \le \delta_2(G_S) \le \frac{5}{29} \approx 0.172.$$

Share $s_r(c)$

The share of a codeword $c \in C$ is a concept introduced by Slater (2001) and is defined as

$$s_r(c) = \sum_{u \in B_r(c)} \frac{1}{|I_r(u)|}.$$

Example of the share:

The sum of shares

- Let G = (V, E) be a finite graph and C be a code in G such that $I_r(u) \neq \emptyset$ for all $u \in V$.
- By double counting argument, we obtain that

$$\sum_{c \in C} s_r(c) = |V|.$$

Proof by example:

Lower bounds using share

- Let $\alpha \in \mathbb{R}$ be such that $s_r(c) \leq \alpha$ for all $c \in C$.
- Then, by the previous slide, we have

$$|V| = \sum_{c \in C} s_r(c) \le \alpha |C|.$$

- ▶ Hence, we have the lower bound $|C| \ge \frac{1}{\alpha}|V|$.
- If G is an infinite graph, then we have the following lower bound for the density of C:

$$D(C) \ge \frac{1}{\alpha}.$$

Share in G_S

- If C is a 2-identifying code in G_S , it is straightforward to show that $s_2(c) \le 19/3$ for all $c \in C$.
- Hence, we obtain that $\delta_2(G_S) \ge 3/19 \approx 0.158$.
- To improve this lower bound, we need to introduce a shifting scheme (or discharging method) to even out the share.
- Indeed, we can show that on average $s_2(c) \le 35/6$.
- This implies that the optimal density of a 2-identifying code in G_S satisfies

$$\delta_2(G_S) \ge \frac{6}{35} \approx 0.171.$$

How to approximate share

- Let u and v be adjacent codewords of a 2-identifying code.
- Since u and v are 2-separated by a codeword, at least one of the squared vertices is a codeword.

As an example, let us consider the following case:

We have

Similarly, we have

Together, we have

$$s_2(\mathbf{u}) \le \frac{61}{12} = \frac{35}{6} - \frac{3}{4}$$
 and $s_2(\mathbf{v}) \le \frac{67}{12} = \frac{35}{6} - \frac{1}{4}$.

What if $s_2(c) > 35/6$?

- We have $s_2(\mathbf{c}) = 19/3 > 35/6$.
- Shift 1/5 units of share to each pair of codewords.
- After shifting, we have $s_2(\mathbf{c}) = 83/15 < 35/6$ and the shares of pairs of codewords stay low enough.

What if $s_2(c) > 35/6$?

- We have $s_2(\mathbf{c}) = 6 > 35/6$.
- Shift 1/20 units of share from c to \mathbf{u}_i for i = 1, 2, 3, 4.
- After shifting, we have $s_2(\mathbf{c}) = 29/5 < 35/6$ and the shares of \mathbf{u}_i stay low enough.

The shifting scheme

There are in total 10 rules in the shifting scheme. The following facts can be shown:

- If $s_2(\mathbf{c}) > 35/6$ for some $\mathbf{c} \in C$, then at least $s_2(\mathbf{c}) 35/6$ units of share is shifted from \mathbf{c} to other codewords.
- If share is shifted to a codeword $c \in C$, then $s_2(c) \le 35/6$ and the codeword c receives at most $35/6 s_2(c)$ units of share.

In conclusion, after the shifting is done, the share of each codeword is at most 35/6. Thus, we obtain the lower bound:

$$\delta_2(G_S) \ge \frac{6}{35} \approx 0.171.$$

Hexagonal grid G_H

• The infinite hexagonal grid G_H illustrated.

Known results on G_H

- By Cohen, Honkala, Lobstein and Zémor (2000), there exists a construction stating that $\delta_1(G_H) \leq 3/7 \approx 0.429$.
- Cranston and Yu (2009) proved a lower bound saying
 that $δ_1(G_H) ≥ 12/29 ≈ 0.414$. Hence, we have

$0.414 \lessapprox \delta_1(G_H) \lessapprox 0.429.$

Charon, Honkala, Hudry and Lobstein (2001) and Stanton (2011) respectively provided the following lower and upper bounds for general r:

$$\frac{2}{5r} \lessapprox \delta_r(G_H) \lessapprox \frac{5}{6r}.$$

Known results in the case r = 2

- Charon, Hudry and Lobstein (2002) provided a construction showing that $\delta_2(G_H) \le 4/19 \approx 0.211$.
- Martin and Stanton (2010) proved the lower bound $\delta_2(G_H) \ge 1/5 = 0.2$.
- This also follows from the following easily shown fact stating that if *C* is a 2-identifying code in G_H , then $s_2(c) \le 5$ for all $c \in C$.
- Moreover (in J. and Laihonen 2011), we have been able to show that on average the share of a codeword in G_H is at most 19/4. Thus, we have

$$\delta_2(G_H) = \frac{4}{19}.$$

Thank you!