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Preliminaries

Let G = (V,E) be a simple undirected graph.

The ball of radius r centered at u ∈ V is defined as

Br(u) = {v ∈ V | d(u, v) ≤ r}.

A nonempty subset of V is called a code, and its
elements are called codewords.

Let C ⊆ V be a code. Then for every u ∈ V we denote

Ir(u) = Ir(C;u) = Br(u) ∩ C .

The set Ir(u) is called the I-set of u.
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Definition

Definition. A code C ⊆ V is said to be r-identifying in G if the I-sets
Ir(u) are nonempty for all u ∈ V and for all u, v ∈ V (u 6= v)

Ir(u) 6= Ir(v). (1)

This definition is due to Karpovsky, Chakrabarty and
Levitin (1998).

Let X ⊆ V and Y ⊆ V . The symmetric difference of X
and Y is defined as X △Y = (X \ Y ) ∪ (Y \ X).

The condition (1) can be replaced by Ir(u)△ Ir(v) 6= ∅.

If Ir(u)△ Ir(v) 6= ∅, then we say that u and v are
r-separated by C.
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Optimal code

In studying identifying codes, the main goal is usually to
find as small codes as possible.

The smallest cardinality of an r-identifying code in a
finite graph G is denoted by Mr(G).

An r-identifying code attaining the smallest cardinality is
called optimal.

In order to measure codes in infinite graphs such as
grids, we later define the concept of density.
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Square grid GS

The square grid GS with the vertex set Z
2 illustrated.
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Density

Consider the square grid GS with the vertex set V = Z
2.

Define Qn = {(x, y) ∈ Z
2 | |x| ≤ n, |y| ≤ n}.

In order to measure codes, we define the density of a
code C in GS as

D(C) = lim sup
n→∞

|C ∩ Qn|

|Qn|
.

An r-identifying code with the smallest density is called
optimal. Moreover, this smallest density is denoted by
δr(GS).
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Known results onGS

By Cohen et al. (1999), there exists a construction
stating that δ1(GS) ≤ 7/20.

Ben-Haim and Litsyn (2005) showed that

δ1(GS) = 7/20.

By Charon et al. (2001) and Honkala and Lobstein
(2002) respectively provided the following lower and
upper bounds for general r:

3

8r
≤ δr(Gs) /

2

5r
.
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Construction in the caser = 2

By Honkala and Lobstein (2002), we have the following
2-identifying code in GS with density 5/29.
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Lower bound in the caser = 2

By the lower bound for general r, we have

δ2(GS) ≥
3

20
= 0.15.

Martin and Stanton (2010) improved this lower bound
by showing that

δ2(GS) ≥
6

37
≈ 0.162.

We further improve this lower bound to 6/35, i.e. show
that

0.171 ≈
6

35
≤ δ2(GS) ≤

5

29
≈ 0.172.

Improved lower bound for 2-identifying code in the square grid – p. 9/23



Sharesr(c)

The share of a codeword c ∈ C is a concept introduced
by Slater (2001) and is defined as

sr(c) =
∑

u∈Br(c)

1

|Ir(u)|
.

Example of the share:

db

ec

a

G s1(b) = 1
2 + 1

2 + 1
3 + 1

2 = 11
6

s1(c) = 1
2 + 1

2 + 1
3 + 1

2 = 11
6

s1(e) = 1
3 + 1

2 + 1
3 = 4

3
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The sum of shares

Let G = (V,E) be a finite graph and C be a code in G
such that Ir(u) 6= ∅ for all u ∈ V .

By double counting argument, we obtain that
∑

c∈C

sr(c) = |V |.

Proof by example:

db

ec

a

G
s1(b) + s1(c) + s1(e)

= 11
6 + 11

6 + 4
3 = 5
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Lower bounds using share

Let α ∈ R be such that sr(c) ≤ α for all c ∈ C.

Then, by the previous slide, we have

|V | =
∑

c∈C

sr(c) ≤ α|C|.

Hence, we have the lower bound |C| ≥ 1
α
|V |.

If G is an infinite graph, then we have the following
lower bound for the density of C:

D(C) ≥
1

α
.
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Share inGS

If C is a 2-identifying code in GS, it is straightforward to
show that s2(c) ≤ 19/3 for all c ∈ C.

Hence, we obtain that δ2(GS) ≥ 3/19 ≈ 0.158.

To improve this lower bound, we need to introduce a
shifting scheme (or discharging method) to even out the
share.

Indeed, we can show that on average s2(c) ≤ 35/6.

This implies that the optimal density of a 2-identifying
code in GS satisfies

δ2(GS) ≥
6

35
≈ 0.171.
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How to approximate share

Let u and v be adjacent codewords of a 2-identifying
code.

Since u and v are 2-separated by a codeword, at least
one of the squared vertices is a codeword.

uv
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Example of approximation

As an example, let us consider the following case:

uv

Improved lower bound for 2-identifying code in the square grid – p. 15/23



Example of approximation

uv

We have

s2(u) ≤

(
1

2
+ 3 ·

1

3

)

︸ ︷︷ ︸

red

+

(
1

2
+ 3 ·

1

3

)

︸ ︷︷ ︸

blue

+

(
1

3
+ 3 ·

1

4

)

︸ ︷︷ ︸

green

+ 1
︸︷︷︸

yellow

=
61

12
.
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Example of approximation

uv

Similarly, we have

s2(v) ≤

(
1

2
+ 3 ·

1

3

)

︸ ︷︷ ︸

blue

+

(
1

3
+ 3 ·

1

4

)

︸ ︷︷ ︸

green

+

(

1 + 4 ·
1

2

)

︸ ︷︷ ︸

grey

=
67

12
.
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Example of approximation

uv

Together, we have

s2(u) ≤
61

12
=

35

6
−

3

4
and s2(v) ≤

67

12
=

35

6
−

1

4
.
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What if s2(c) > 35/6?

c

We have s2(c) = 19/3 > 35/6.

Shift 1/5 units of share to each pair of codewords.

After shifting, we have s2(c) = 83/15 < 35/6 and the
shares of pairs of codewords stay low enough.
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What if s2(c) > 35/6?

c

u
1

u
3

u
2

u
4

We have s2(c) = 6 > 35/6.

Shift 1/20 units of share from c to ui for i = 1, 2, 3, 4.

After shifting, we have s2(c) = 29/5 < 35/6 and the
shares of ui stay low enough.
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The shifting scheme

There are in total 10 rules in the shifting scheme. The
following facts can be shown:

If s2(c) > 35/6 for some c ∈ C, then at least s2(c) − 35/6
units of share is shifted from c to other codewords.

If share is shifted to a codeword c ∈ C, then
s2(c) ≤ 35/6 and the codeword c receives at most
35/6 − s2(c) units of share.

In conclusion, after the shifting is done, the share of each
codeword is at most 35/6. Thus, we obtain the lower bound:

δ2(GS) ≥
6

35
≈ 0.171.
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Hexagonal gridGH

The infinite hexagonal grid GH illustrated.
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Known results onGH

By Cohen, Honkala, Lobstein and Zémor (2000), there
exists a construction stating that δ1(GH) ≤ 3/7 ≈ 0.429.

Cranston and Yu (2009) proved a lower bound saying
that δ1(GH) ≥ 12/29 ≈ 0.414. Hence, we have

0.414 / δ1(GH) / 0.429.

Charon, Honkala, Hudry and Lobstein (2001) and
Stanton (2011) respectively provided the following lower
and upper bounds for general r:

2

5r
/ δr(GH) /

5

6r
.
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Known results in the caser = 2

Charon, Hudry and Lobstein (2002) provided a
construction showing that δ2(GH) ≤ 4/19 ≈ 0.211.

Martin and Stanton (2010) proved the lower bound
δ2(GH) ≥ 1/5 = 0.2.

This also follows from the following easily shown fact
stating that if C is a 2-identifying code in GH , then
s2(c) ≤ 5 for all c ∈ C.

Moreover (in J. and Laihonen 2011), we have been able
to show that on average the share of a codeword in GH

is at most 19/4. Thus, we have

δ2(GH) =
4

19
.
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Thank you!
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